

GLAST LAT Multiwavelength Studies - Overview

Dave Thompson
GLAST Large Area Telescope
Multiwavelength Coordinator

- 1. Multiwavelength (MW) Opportunities
- 2. GLAST Limitations and How We Overcome Them

Dave Thompson

Multiwavelength Gamma-ray Sources

Gamma-ray sources are nonthermal, typically produced by interactions of high-energy particles.

Known classes of gamma-ray sources are multiwavelength objects, seen across much of the spectrum.

GLAST Planning

Both GLAST instruments have huge fields of view.

GLAST will be operated in scanning mode.

Both the GBM and the LAT will survey the entire sky about every three hours.

Whatever your favorite source is, GLAST will observe it.

The GBM data (bursts) become public immediately.

The LAT data are not generally public during Cycle 1, but there are exceptions, and the LAT team is eager to cooperate with observers with correlative data.

Dave Thompson

GLAST LAT and Other Observatories – Common Scientific Interests

Gamma rays are nonthermal, so sources of interest are those that have hard, nonthermal spectra.

Blazars – LAT will quickly announce flares that can be correlated with data at other wavelengths or used as TOO triggers.

Radio galaxies, galaxy clusters, starburst galaxies, and luminous IR galaxies are potential LAT sources.

Pulsars – a known Galactic gamma-ray source class.

Microquasars, pulsar wind nebulae, and supernova remnants are likely LAT Galactic source classes. Stellar Winds in WR-Binaries and OB associations are potential LAT sources.

As soon as a new source class is <u>suggested</u> in LAT data, the LAT scientists will come looking for cooperative efforts – maybe yours.

The Challenge of Gamma-ray Source Identification

With the exception of bright pulsars, no source is likely to be identified using gamma-ray data alone.

"Truth in advertising" We do not want to encourage unrealistic expectations.

Inherent limitations are due to physics and astrophysics of gamma rays.

- Imaging
- Spectroscopy
- Statistics

Reminder: GLAST LAT response functions are still in development. This is all preliminary.

High-Energy Gamma-Ray Imaging

Although bright sources can be localized to better than 1 arcmin, weak source error boxes will be up to 10 arcmin.

The PSF is more like 10 arcmin, so the imaging is limited.

LAT is unlikely to resolve anything smaller than about half a degree.

Simulated 5-year LAT image of SNR RXJ 1713.7-3946 (Funk, 2006). The SNR diameter is about 1 degree.

High-Energy Gamma-Ray Spectroscopy

There are no highenergy gamma-ray lines that can be used for redshift or abundance measurements.

LAT will concentrate on measuring the shapes of continuum spectra.

Simulated 1-year LAT spectrum from the Vela pulsar, for two models (Razzano, 2006).

High-Energy Gamma-Ray Statistics

Time estimates

Except for gamma-ray bursts, none of the sources are bright enough to produce statisticallysignificant detections of short time variations.

Source	l (deg)	b (deg)	z	Flux*/index	Time**
BL Lac	92.6	-10.44	0.069	11.1 /2.60	20 d
			2	39.9/2.60	2 d
3C273	289.9	64.4	0.158	15.4/2.58	5.5 d
3C279	305.10	57.06	0.536	74.2/1.96	4 h
				1000/2	9 min
PKS0528+134	191.4	-11.01	2.06	93.5/2.46	11 h
	the latest the same of the sam	Aug Tradical	Name of the last o	300/2.21	1.4 h
			5	30/2.5	3 d
PKS2155-304	17.73	-52.25	0.116	13.2/ 2.35	5 d
1ES1959+650	98.0	17.7	0.047	13.3/2.45	9.5 d

^{* [}E>100 MeV] 10-8 ph cm-2s-1

Estimates of times for source detections with LAT (Lott, 2007).

^{**} to achieve 5 or

Multiwavelength Gamma-Ray Source Identification – Some Possibilities

The GLAST LAT team is developing Figure of Merit approaches for statistical association of sources with possible new classes. We will need some specific examples to confirm such associations.

"Top-Down" approach: look for an X-ray or TeV counterpart with better source localization.

"Bottom-Up" approach: look for a flat-spectrum radio counterpart

"Variability/Spectral Modeling" approach: look for consistency across the spectrum.

Illustrate with the few examples from EGRET where these were possible.

Top-Down: 3EG J1835+5918

Parallel effort by two groups, headed by Mirabal/Halpern and Reimer/Carramiñana – used the same approach and reached the same conclusion for 3EG J1835+5918

Bottom-Up: 3EG J2006-2321

10 12 14 16 18 20 22 24 26 28

 $\log_{10}(\nu/\text{Hz})$

One flat-spectrum radio source, 260 mJy at 5 GHz; one marginally-flat source, 49 mJy; other sources are much weaker

Optical observations:

The 49 mJy source is a normal galaxy;

The 260 mJy source has an optical counterpart with a redshift z=0.83

Variable optical polarization is seen. Only an X-ray upper limit found.

Spectral energy distribution is bimodal like other blazars Conclusion: a flat spectrum radio quasar (FSRQ)

Dave Thompson

-16

-18

Variability/Spectra: 3EG J0433+2908

Assembling the Puzzle (Foreman et al.)

From catalogs:

Flat-spectrum radio source, 475 mJy at 5 GHz

IR, optical, X-ray source

From observations:

Radio variability

Gamma-ray variability

Probable optical and X-ray variability

Featureless optical spectrum

Spectral energy distribution is bimodal like other blazars

Conclusion: probably a BL Lac

GLAST Multiwavelength – Summary

You do not have to be a GLAST scientist to work with the LAT team, even during Phase 1. If your data include a source seen by the LAT, we are interested.

There are opportunities for theorists and observers from all wavelengths to help open up the discovery space that GLAST will provide. Join the fun!

Dave Thompson 13